
Secure Execution of Computations in Untrusted Hosts

S. H. K. Narayanan1, M. T. Kandemir1, and R. R. Brooks2, I. Kolcu3

1Department of Computer Science and Engineering
The Pennsylvania State University, University Park, PA 16802, USA

2Department of Electrical and Computer Engineering
Clemson University, Clemson, SC 29634, USA

3Computation Department, UMIST, Manchester, M60 1QD, UK

Abstract. Proliferation of distributed computing platforms, in both small and large scales, and mo-
bile applications makes it important to protect remote hosts (servers) from mobile applications and
mobile applications from remote hosts. This paper proposes and evaluates a solution to the latter prob-
lem for applications based on linear computations that involve scalar as well as array arithmetic. We
demonstrate that, for certain classes of applications, it is possible to use an optimizing compiler to
automatically transform code structure and data layout so that an application can safely be executed
on an untrusted remote host without being reverse engineered.

c©Springer-Verlag 2006. This is the author’s version of the work. The publication is
avaiable at the Lecture Notes in Computer Science (LNCS) webpage at
http://dx.doi.org/10.1007/11767077 9, or via the main LNCS webpage,
http://www.springer.de/comp/lncs/index.html.

This work is supported in part by NSF Career Award 0093082 and a grant from the
GSRC.

Secure Execution of Computations
in Untrusted Hosts�

S.H.K. Narayanan1, M.T. Kandemir1, R.R. Brooks2, and I. Kolcu3

1 Department of Computer Science and Engineering
The Pennsylvania State University, University Park, PA 16802, USA

{snarayan, kandemir}@cse.psu.edu
2 Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29634, USA
rrb@acm.org

3 Computation Department, UMIST, Manchester, M60 1QD, UK
ikolcu@umist.ac.uk

Abstract. Proliferation of distributed computing platforms, in both
small and large scales, and mobile applications makes it important to
protect remote hosts (servers) from mobile applications and mobile appli-
cations from remote hosts. This paper proposes and evaluates a solution
to the latter problem for applications based on linear computations that
involve scalar as well as array arithmetic. We demonstrate that, for cer-
tain classes of applications, it is possible to use an optimizing compiler
to automatically transform code structure and data layout so that an
application can safely be executed on an untrusted remote host without
being reverse engineered.

1 Introduction

Mobile code technology allows programs to move from node to node on a net-
work. Java is probably the best-known mobile code implementation. Applets can
be downloaded and executed locally. Remote Method Invocation (RMI) allows
applets registered with a service to be executed on a remote node. The use of
a standardized language allows virtual machines running on different processors
to execute the same intermediate code.

The software update and patch systems for both Microsoft and the Linux com-
munity are built on mobile code infrastructures. In current security research, the
goal is to secure individual workstations and restrict program execution to a set
of trusted programs.This paper looks at the largely ignored problem of protect-
ing programs running on remote untrusted systems, and proposes automated
compiler help to ensure secure execution of programs. Several important appli-
cations exist for this technology. A driving force for computer interoperability
and sharing of software is business-to-business e-commerce. There are real needs
to retrieve information from remote suppliers or clients. On the other hand, there
� This work is supported in part by NSF Career Award 0093082 and a grant from the

GSRC.

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 106–118, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

mailto:rrb@acm.org?&cc=snarayan@cse.psu.edu&subject=ADA-EUROPE-Paper: Secure Execution of Computations in Untrusted Hosts
mailto:rrb@acm.org?&cc=snarayan@cse.psu.edu&subject=ADA-EUROPE-Paper: Secure Execution of Computations in Untrusted Hosts
mailto:ikolcu@umist.ac.uk?&cc=snarayan@cse.psu.edu&subject=ADA-EUROPE-Paper: Secure Execution of Computations in Untrusted Hosts

Secure Execution of Computations in Untrusted Hosts 107

are also real needs to guard corporate intellectual property. The approaches we
present are an initial step towards allowing interoperability without risking re-
verse engineering and the loss of intellectual capital. Legal and accounting appli-
cations of the approach for auditing and monitoring systems is also foreseeable.
Finally, remote sensor-based processing is another potential application domain
because in many cases data remains with the sensors that collect them or our
application needs data that is available only in a particular region covered by
(untrusted) sensor nodes. Consequently, we need to be able to execute our appli-
cation remotely and we do not know whether the sensor nodes are reliable. In all
these scenarios, remote secure execution in an untrusted environment is a critical
issue, and this paper proposes and evaluates a compiler-driven approach to this
problem and presents experimental evidence demonstrating its applicability.

Mobile code security is not a new topic. Generally, the research in this area can
be broken down into three parts. Protecting the host from malicious code, pro-
tecting the code from malicious hosts and finally, preventing man-in-the-middle
type attacks which result in mobile code or generated results being leaked. In
the mobile code protection domain, which is what this paper targets, prior works
involve sending the original code and somehow ensuring that the right results are
brought back, i.e. they concentrate on the results generated by mobile code. For
example, [3] deals with spoofing and [14] addresses the problem of a malicious
remote host not generating the right results. Further, [9] gives a technique to
prevent one host from changing the results generated by another host.

However, the prior works assume that the original code can be shared with
all hosts, irrespective of whether they are trustworthy. Our approach allows the
owner of the mobile code, to protect the code itself from being revealed and
hence helps to preserve intellectual capital. The proposed mechanism allows the
owner to send a code that is different from the original code and still get back the
results that he/she wants. Hence, this approach ensures that if the owner does not
want to share the code, the confidentiality of the original code is never lost. The
proposed mechanism cannot individually solve all the issues involved in mobile
code security (such as spoofing, correct code execution, obtaining untampered
results), but when used in conjunction with existing techniques it ensures that
the code as well as the generated results are secure.

This rest of this paper is organized as follows. Section 2 discusses related
work. Section 3 presents a high-level view of the proposed approach, and its
mathematical details are presented in Section 4. Section 5 explains how compu-
tation matrices are formed and how our approach handles affine computations.
Section 6 discusses the selection of transformation matrices for correct secure ex-
ecution. Section 7 discusses how our approach is extended when we have multiple
servers. Section 8 provides an example and Section 9 discusses our experimental
results. Section 10 concludes the paper.

2 Related Work

The work presented in this paper is related to many efforts in distributed comput-
ing, agent-based computing, remote procedure invocation, code security/safety,

108 S.H.K. Narayanan

and code obfuscation domains. In this section, we only focus on the secure exe-
cution of functions on untrusted hosts. This has been studied as a more general
problem of confidentiality of execution in efforts such as [1, 4, 12, 13]. Most of
these efforts focus on the circuit computation model which is not very well
suited for general, large-scale mobile code. Sander and Tschudin [8, 10] defined a
function hiding scheme, and focused on non-interactive protocols. In their frame-
work, the privacy of a function is assured by an encrypting transformation on
that function. Integrity of evaluation is the ability of the circuit owner to verify
the correctness of the execution of his/her circuit. This problem has been widely
studied in the view of reliability but not from the view of a malicious server. The
proof-based techniques [14] suggested that the untrusted host has to forward a
proof of correctness of execution together with the result.

Perhaps the most relevant prior work to the one presented in this paper is [6, 7]
in which a function is encrypted using error coding and sent to the untrusted
host which provides the clear-text input. The enciphered output generated by
the host is then sent back to the original host, where it is decrypted and the result
is verified. The authors advocate the employment of the tamper proof hardware
(TPH) as a necessary mechanism to store and provide the control flow between
the numerous functions that make up a program. Control flow is located on the
TPH and is supplied to the untrusted host. The main difference between these
studies and the work presented in this paper is that we target general scalar and
array based computations not circuit-specific expressions. Consequently, the code
and data transformations used by our approach are different from those employed
in prior studies such as [6, 7], and are directed by an optimizing compiler. Further,
our approach deals with the case with multiple untrusted hosts as well.

3 High-Level View

This section presents an overview of the proposed mechanism. First, the mech-
anism used for scalar codes is presented. Following this, array based codes are
discussed. In both the cases, we use the term “client” to refer to the owner of
the application code to be executed, and the term “server” to denote the remote
untrusted host (node) that will execute this application.

3.1 Scalar Codes

The high-level view of our approach for linear scalar computations is illustrated
in Figure 1(a). On the client side, we have a computation represented, in a
compact form, by computation matrix C. We want to execute this computation
using input data represented by vector I, and generate an output, represented
by vector O. That is, the original computation that we want to perform (as the
client) can be expressed in mathematical terms as:

O = CI. (1)

Secure Execution of Computations in Untrusted Hosts 109

(a) (b)

Fig. 1. High-level view of secure code execution in an untrusted server for (a) Scalar
codes and (b)Array based codes. The thick curve represents the boundary between the
client and the server. Both cases calculate O = CI .

The problem is that the client does not have input I and this input data cannot
be transmitted to the client.1 Consequently, the computation must be performed
at the server side. The client transforms C to C′, and sends this transformed
code to the server. The server in turn executes this transformed code represented
by matrix C′ using input I, computes an output (O′), and sends it to the client
(note that O′ �= O). Since only the client knows the relationship between C and
C′, it also knows how to obtain the originally required output O from O′, and
it uses an appropriate data transformation for this purpose.

3.2 Array-Based Codes

The high-level view of our approach for array based computations is illustrated
in Figure 1(b). C is transformed by a loop transformation into a code C′, in
which the order, by which the elements of an array are accessed, within the loop
is changed. In the next step, C′ undergoes a semantic transformation to form a
new code in which the meaning of the code itself is changed. In order to prevent
the untrusted host from gleaning the locations of the arrays to which computed
values are written (on the left-hand-side of the expressions), the left-hand-side
arrays are replaced by different array expressions. This step is referred to as
redirection or data remapping. C′′ is applied to the input I by the server to
generate the output O′′. This output is sent back to the client, which obtains
O′ from it by applying the inverse of the semantic transformation used earlier.
Following this, we use the inverse of the array redirection used earlier, which
eventually gives us O, the desired output (i.e., O = CI) .

1 This can be due to two potential reasons: either the data is not physically movable
as in the case in a remote sensor processing environment, or the server is not willing
to share data, due to security concerns.

110 S.H.K. Narayanan

4 Mathematical Details

This section provides the mathematical details of our proposed method. For the
purpose of clarity, the determination of computation and code/data transforma-
tion matrices is dealt with separately in Section 5 and Section 6, respectively.

4.1 Scalar Codes

The main restriction that we have regarding the computation to be performed
is that it should be a linear function of I, and as a result, can be represented by
a matrix (C), as is well-known from the linear algebra theory. Note that in the
execution scenario summarized above, the client performs two transformations:
• Code Transformation: This is performed to obtain C′ from C. As both C′ and
C are linear and expressed using matrices, we can use a linear transformation
matrix T to denote the transformation performed. Consequently :

C′ = TC. (2)

• Data Transformation: This is performed to obtaining O from O′, and can also
be represented using a matrix (M):

O = MO
′

. (3)
4.2 Array-Based Codes

The client performs the following series of transformations on the computation
matrix C:

• Loop Transformation: In optimizing compiler theory, loop transformations
are used to reorder the points in loop iteration spaces [11]. Here it is used to
obtain C′ from C. Each execution of a loop body is represented by an iteration
vector i. An array reference accessed in a nest is represented as:

Li + o, (4)

where L is referred to as the access matrix and o is referred to as the offset
vector. A linear loop transformation can be represented using a transformation
matrix TL. Upon application of this transformation, the iteration vector i is
mapped to i′ = TLi. As a consequence, the new subscript function is given by
the following expression:

LTL
−1

i
′ + o. (5)

This means that the new (transformed) access matrix is L′ = LTL
−1. The loop

transformation does not affect the offset vector o. The loop bounds are, however,
affected by this transformation. The loop bounds of the transformed iteration
space can be computed – in the most general case – using techniques such as
Fourier-Motzkin elimination [11].

• Semantic Transformation: This is performed to obtain C′′ from C′. Since
both C′′ and C′ are linear and expressed using matrices, a transformation matrix
T is used to denote the transformation being applied.

Secure Execution of Computations in Untrusted Hosts 111

C′′ = TC′. (6)

It needs to be emphasized that T is entirely different from TL. While it is
true that both of them are applied to the loop nest, TL re-orders loop itera-
tions, whereas T modifies the loop body. Another important difference is that
while TL is a semantic-preserving transformation, T changes the meaning of the
computation performed within the loop body.

• Redirection: This is a data space transformation performed to hide the mem-
ory locations in the client to which the results of computation are being stored.
This also makes manipulating the results of the computation easier as the di-
mensions of the result matrices will be the same. Let Li+o be an array reference
after the loop and semantic code transformations have been applied. Our goal is
to apply a data (memory layout) transformation such that the access matrix and
the offset vector are mapped to desired forms. While any data transformation
that changes L and o is acceptable, the one adopted in this work transforms the
access matrix to the identity matrix and the offset vector to the zero vector if
it is possible to do so (if not, we use an arbitrary but legal transformation). We
represent a data transformation using a pair (S, s). In this pair, S is termed as
the data transformation matrix and is m × m for an m-dimensional array. s is
called the shift vector and has m entries. Redirection transforms, the reference
Li + o to:

SLi + So + s.

We want SL to be the identity matrix (ID) and So + s to be the zero vector.
We solve this system of equations as follows. First, from SL = ID we solve for
S. After that, we substitute this S in the second equation (So + s = 0), and
determine s.

• Inverse Semantic Transformation: This is performed to obtain O′ from O′′,
and can also be represented using a matrix (M).

O
′ = MO

′′. (7)

Note that, at this point, we apply the inverse of the redirection used earlier, and
do not apply the inverse of the loop transformation used earlier. This is because,
C and C′ are semantically equivalent and the outputs generated by them are
equivalent (in the context of this paper).

• Inverse Redirection: The purpose of this transformation is to obtain the
original memory locations of the output elements computed. Recall that the
redirection transforms reference Li + o to SLi + So + s. To obtain the original
reference from this, we use the data transformation (Y, y). This gives us:

Y {SLi + So + s} + y,

which expands to

Y SLi + Y So + Y s + y.

Since we want Y SL = L and Y So + Y s + y = o, we determine Y and y as:

Y = S
−1 and y = −S

−1
s.

112 S.H.K. Narayanan

5 Determining Computation Matrix and Handling Affine
Programs

An important problem is to determine matrix C, given a code fragment. Recall
that this matrix captures the relationship between I and O. Let us assume
for now that the program variables in I and O are disjoint; that is, the two
vectors have no common variables. In this case, it is easy to convert a linear
code fragment to C. As an example, consider the code fragment below:

a := d+e+f;
b := g-2e;
c := 3f+4d;

For this fragment, the input variables are e, d, f and g, and the output variables
are a, b and c. Consequently, we can express I, O, and C as:

I =

��� d
e
f
g

���� ; O =

�� a
b
c

�� ; and C =

�� 1 1 1 0
0 −2 0 1
4 0 3 0

�� .

However, the problem becomes more difficult if there are dependencies in the
code. Our solution to this problem is to use multiple C ”sub-fragments”. As an
example, let us consider the following code fragment:

a := d-5c+2g;
b := e+f;
c := g+4d;
h := 3e-4d;

Since variable c is used both on the right-hand-side of the first statement and on
the left-hand-side of the third statement, we cannot directly apply the method
used in the previous case. However, we can (logically) divide the statements
into two groups. The first group contains the first two statements, whereas the
second group contains the remaining two statements. Note that, the only data
dependence in the code (an anti-dependence in this case) goes from the first
group to the second group; that is, the original code fragment is divided over
the data dependence. After this division, we can assign a separate C matrix to
each sub-fragment. In this example, we have:

I1 =

����� c
d
e
f
g

� ���� ; O1 = � a
b � ; C1 = � −5 1 0 0 2

0 0 1 1 0 � and I2 =

�� d
e
g

�� ; O2 = � c
h � ; C2 = � 4 0 1

−4 3 0 � .

The C1 and C2 matrices are then used to represent the computation performed
by the two sub-fragments.

So far, our formulation has focused on handling linear computations. We now
discuss how our approach can be extended to affine computations. These compu-
tations are different from linear computations in that the relationship between
I and O is expressed as:

O = CI + c, (8)

Secure Execution of Computations in Untrusted Hosts 113

as opposed to O = CI, used in the linear case. Here, c is a constant vector, i.e.,
it contains the constant terms used in the assignment statements that form the
computation. Let us define our loop transformation in this case as follows:

C
′ = TC + t, (9)

where t is a constant vector, whose entries are to be determined (along with those
of T). In this case, the server computes O′ = TCI + Tc + t. After receiving O′

from the remote (untrusted) server, the client calculates:

O = MO
′ + m, (10)

where m is a constant vector. Hence, for correct execution, we need to have:

CI + c = MTCI + MTc + Mt + m (11)

This means that the following two equalities have to be satisfied:

C = MTC (12)
c = MTc + Mt + m (13)

The details of the solution are omitted due to space concerns.

6 Selection of T and M

In this section, we study the required relationship between T and M to ensure
correctness. First, we focus on scalar codes, and then array based codes.

6.1 Scalar Codes

We start with Equation (3), and proceed as follows:

O = MO
′

O = MC′
I

O = MTCI

CI = MTCI

Since I �= 0 (zero vector), from this last equality, we can obtain:

C = MTC. (14)

In other words, M must be left inverse of T . Let us now discuss the dimen-
sionalities of matrices T and M . Assuming that I has n entries and O has m
entries, C is m × n. Therefore, the only dimensionality requirement regarding
T is that it needs to have m columns, and similarly M needs to have m rows.
Thus, matrices T and M are k × m and m × k, respectively. That is, we have a
flexibility is selecting k. There is also an alternate way of generating C′ from C.
More specifically, we can have C′ = CT . In this case, we can proceed as follows:

114 S.H.K. Narayanan

O = MO
′

O = MC′
I

O = MCTI

CI = MCTI

Since I �= 0 (zero vector), from this last equality, we can obtain:

C = MCT. (15)

However, it should be noticed that with this formulation, we do not have a flex-
ibility in selecting the dimensions of transformation matrices T and M . Specif-
ically, T should be an n × n matrix, and M should be an m × m matrix; i.e.,
we need to work with square matrices. In this case, given a T matrix, we can
determine M by solving the resulting linear system of equations. Alternately, we
can adopt the following strategy. Let us select an M matrix first, and define a
new matrix Q as Q = MC. Using this, we can proceed as follows:

C = MCT

C = QT

Q
T

C = Q
T

QT

(QT
Q)−1

Q
T

C = T

Notice that the last equality gives us the T matrix. It must be noted, however,
that in order to use this strategy, we need to select a suitable M such that QT Q
is invertible, i.e., it is non-singular.

6.2 Array Based Codes

Selection of the matrices T and M for array based codes is similar to their
selection for scalar codes. Starting with Equation (7), we proceed as follows:

O
′ = MO

′′

O
′ = MC′′

I

O
′ = MTC′

I

C′
I = MTC′

I

Note that the last equality is obtained from the penultimate one because loop
transformation changes only the order by which the elements are accessed during
execution but not the result of the execution itself. So, it is correct to equate O′

and C′I; and since I �= 0 (zero vector), from this last equality, one can obtain:

C′ = MTC′. (16)

In other words, M must be left inverse of T. Note that similar to the case
with scalar codes, there is also an alternate way of generating C′′ from C′. More
specifically, we can set C′′ to C′T . The details are omitted due to space concerns.

Secure Execution of Computations in Untrusted Hosts 115

7 Multiple Server Case

In this section, we discuss how the proposed approach can be extended to the
case with multiple servers. Due to space concerns, we focus only on scalar com-
putations. The execution scenario in this case, which is depicted in Figure 2,
can be summarized as follows. The client divides the computation (C) to i sub-
computations, where the ith sub-computation is represented by matrix Ci, where
1 ≤ i ≤ p. In mathematical terms, this can be expressed as follows:

O = CI (17)

O1
O2

...
Op

 =

C1 0 0 0
0 C2 0 0
...

...
. . .

...
0 0 0 Cp

I1
I2

...
Ip

 . (18)

Note that Ci operates on input Ii and generates output Oi. The client then
determines a Ti matrix and computes C′

i = TiCi. Then, C′
i is sent to the server

i, which in turn computes O′
i = C′

iIi, and sends it back. After having received
O′

i from server i, the client calculates Oi = MiO
′
i, where Mi is the data trans-

formation matrix used in conjunction with Ti. Note that, for correctness, we
should have Mi = T−1

i . After collecting O′
1, O′

2, ..., O′
p and obtaining O1, O2,

..., Op, the client merges these outputs into the desired out vector O. A simi-
lar analysis could be conducted by using the alternate formulation as well (see
Section 6).

Fig. 2. High-level view of secure code execution in multiple untrusted servers. Note
that the original computation, C, is divided into p sub-computations, and each sub-
computation is set to get executed on a different server.

8 Example

In this section an example on our approach is presented. Due to space restrictions
only an example based on scalar codes is presented.

Consider the following linear code fragment taken from [5]:

116 S.H.K. Narayanan

dx0 = x0 - x1 - x12
dy0 = y0 - y1 - y12
dx1 = x12 - x2 + x3
dy1 = y12 - y2 + y3

The computation matrix for this computation is:

C = 	
� 1 −1 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 −1
0 0 −1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 1

�� � .

Given the input represented by

I = (x0 x1 x2 x3 x12 y0 y1 y2 y3 y12)T = (10 10 10 10 10 10 10 10 10 10)T ,

the original output can be computed as:

O = (dx0 dy0 dx1 dy1)T = CI =	
� 1 −1 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 −1
0 0 −1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 1

� ��� 10 10 10 10 10 10 10 10 10 10 � T = 	
� −10
−10

10
10

� � .

We now discuss how the same computation is carried out in an untrusted remote
server environment. Let us assume the following loop transformation matrix:

T = 	
� 1 1 0 −1
0 1 0 0

−1 0 1 0
0 −1 0 1

� � .

In this case, the transformed computation matrix (C′ = TC) is:

C′ = 	
� 1 −1 0 0 −1 1 −1 1 −1 −2
0 0 0 0 0 1 −1 0 0 −1

−1 1 −1 1 2 0 0 0 0 0
0 0 0 0 0 −1 1 −1 1 2

� � .

Consequently, the computation performed by the remote server is:

O
′ = C′

I = � −30 − 10 20 20 � T .

After receiving the output generated by the server, the client needs to multiply
it by M = T−1. In this case, M can be found as:

M = 	
� 1 0 0 1
0 1 0 0
1 0 1 1
0 1 0 1

� � .

Therefore, the resulting output is:

MO
′ = 	
� 1 0 0 1

0 1 0 0
1 0 1 1
0 1 0 1

� � 	
� −30
−10

20
20

� � = 	
� −10
−10

10
10

� � ,

which is the same as the intended output that would be computed from O = CI.

Secure Execution of Computations in Untrusted Hosts 117

9 Experiments

In this section, we explain how the overheads of the proposed mechanisms are
calculated. To test the proposed approach, we implemented it within an opti-
mizing compiler (built upon SUIF [2]) and performed experiments with three
applications that model execution in a sensor-based image processing environ-
ment. The first of these applications, TRACK SEL 2.0, implements a vehicle
tracking algorithm which is used to support missile systems by maintaining sur-
veillance against incoming targets and providing the data required for targeting,
launch, and midcourse guidance. The second application, SMART PLANNER,
is an emergency exit planner. The application determines the best exit route in
case of an emergency which is detected, in the current implementation, using
heat sensors. Our third application is named CLUSTER and implements a dy-
namic cluster forming algorithm. It’s main application area is energy-efficient
data collection in a wireless sensor environment. All these three applications are
written in C++, and their sizes range from 1,072 to 3,582 C++ lines (excluding
comment lines). For each application in our experimental suite, we compared
two different execution schemes. In the first scheme, which is not security ori-
ented, the application is shifted from one workstation to another and executed
there using local data. The second execution implements the proposed approach.
Specifically, the application is first transformed and then sent to the remote ma-
chine and, when the results are received, they are transformed as explained in
the paper. We measured the additional performance overhead incurred by our
approach over the first execution scheme. More specifically, we computed the
ratio

(loop restructuring time + data transformation time)
(total execution time)

,

where “total execution time” includes the time spent in computation in the remote
machine and the time spent during communication. We found that the value of
this ratio was 0.0421, 0.0388, and 0.0393 for the benchmarks TRACK SEL 2.0,
SMART PLANNER, and CLUSTER, respectively. That is, the extra code/data
transformations required by our approach do not bring significant performance
overheads, which means that we pay a small price to hide the semantics of the
application from the remote machine.

10 Concluding Remarks

This paper presents a novel, automated solution to the problem of protecting
mobile applications from untrusted remote hosts. These applications based on
scalar and array based codes, are automatically transformed with the help of an
optimizing compiler to prevent reverse engineering.

Future work involves extending the proposed approach to cater to general
purpose programs that cannot be readily expressed as a linear function of the
inputs. In order to so, a method to represent the non-linear code in an array

118 S.H.K. Narayanan

format is required. One possible way is to simply treat a variable, such as a,
and a non-linear sub-expression that it appears in, such as a2, to be different
variables. That is, we can assume a2 = x and use x in our formulation. This
technique however does not solve the problem of an expression like ab where b
is itself a variable. Further, the problem of recognizing dependencies between
an assignment to a and the use of x is complicated. Once the representation
mechanism exists, it can be used with the transformation techniques to hide the
semantics of the original code as shown in this paper.

References

1. M. Abadi and J. Feigenbaum. Secure circuit evaluation. Journal of Cryptology,
2(1):112, 1990.

2. S. P. Amarasinghe, J. M. Anderson, C. S. Wilson, S.-W. Liao, B. R. Murphy, R. S.
French, M. S. Lam, and M. W. Hall. Multiprocessors from a Software Perspective
IEEE Micro, June 1996, pages 52-61.

3. A. Bremler-Barr, H. Levy. Spoofing prevention method. In Proc. of INFOCOM
2005, Volume 1, pages 536 - 547, 2005.

4. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In Proc. of the 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, May 1987.

5. C. Li, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: a tool for eval-
uating and synthesizing multimedia and communication systems. In Proc. of the
International Symposium on Microarchitecture, 1997.

6. S. Loureiro, L. Bussard, and Y. Roudier. Extending tamper-proof hardware security
to untrusted execution environments. In Proc. of CARDIS, 2002.

7. S. Loureiro and R. Molva. Function hiding based on error correcting codes. In
Proc. of the International Workshop on Cryptographic Techniques and Electronic
Commerce, pages 92–98, 1999.

8. T. Sander and C. F. Tschudin. Towards mobile cryptography. In Proc. of the 1998
IEEE Symposium on Security and Privacy, pp. 215–224, 1998.

9. A.Tripathi, N. Karnik. A Security Architecture for Mobile Agents in Ajanta. In
Proc. of the International Conference on Distributed Computing Systems, 2000.

10. T. Sander and C. Tschudin. On software protection via function hiding. In Proc.
of the Second Workshop on Information Hiding, 1998.

11. M. Wolfe. High Performance Compilers for Parallel Computing, Addison-Wesley
Publishing Company, 1996.

12. A. C. Yao. Protocols for secure computations. In Proc. of the IEEE Symposium on
Foundations of Computer Science, pages 160–164, 1982.

13. A. C. Yao. How to generate and exchange secrets. In Proc. of the IEEE Symposium
on Foundations of Computer Science, pages 162–167, 1986.

14. B. Yee. A sanctuary for mobile agents. Technical Report CS97-537, Department of
Computer Science and Engineering, April 1997.

	Introduction
	Related Work
	High-Level View
	Scalar Codes
	Array-Based Codes

	Mathematical Details
	Scalar Codes
	Array-Based Codes

	Determining Computation Matrix and Handling Affine Programs
	Selection of T and M
	Scalar Codes
	Array Based Codes

	Multiple Server Case
	Example
	Experiments
	Concluding Remarks

